

SPECIFICATION

Product Name: Laser Particle Sensor Module

Item No.: PM3003S

Version: V0.1

Date: 5th, March 2021

Revision

No.	Version	Content	Date
1	V0.1	First version	2021.03.05

Laser Particle Sensor Module

PM3003S

Applications

- Outdoor Air Quality Monitoring
- Construction Site Monitoring
- Mining Site Monitoring
- Environment Monitoring Alarm System

Description

PM3003S is a linear light source-based particle sensor module with laser scattering technology. It is designed to measure the quantity per unit volume of different particle size and can output particle mass concentration PM1.0, PM2.5, PM10 and TSP in μ g/m³ at the same time via mathematical algorithm and scientific calibration. Built-in Cubic auto particle identification technology with customer external stable flow air pump, can realize the accurate measurement in different dust source environment.

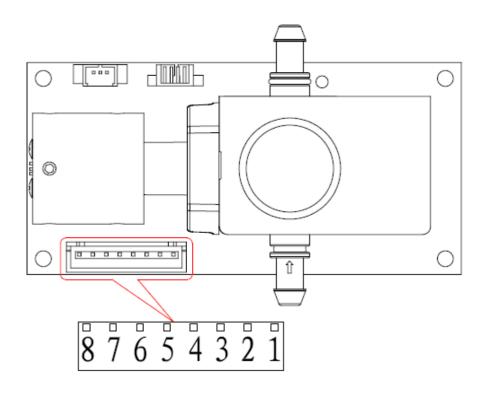
Features

- Patented API (intelligent automatic particle identification) technology to ensure high accuracy measurement
- Real-time output of PM1.0, PM2.5, PM10 and TSP in µg/m3 at the same time
- Longer lifetime with industrial grade laser diode
- Wider working temperature:-30°C~70°C
- Signal output optional: UART, I²C
- Small size, easy to install

Working Principle

Sampling by the pressure which occurs by the external air pump connected, when sampling particles pass through light beam (laser), there will be light scattering phenomenon. Scattered light will be converted into electrical signal (pulse) via photoelectric transformer. The bigger particles will obtain stronger pulse signal (peak value). Through peak value and pulse value quantity concentration of particles in each size can be calculate. Thus, real-time measured data is obtained through measuring quantity and strength of scattered light.

Specifications


Laser Particle Sensor PM300	3S Specification
Operating principle	Laser scattering
Measurement range	0~1,000μg/m³ Maximum display 30,000μg/m³
Working condition	-30°C ~ 70°C,0-95%RH (non-condensing)
Storage condition	-40°C ~ 85°C, 0-95%RH (non-condensing)
Accuracy of PM1.0/PM2.5	≤100µg/m³: ±10µg/m³ 100~1000µg/m³: ±10%reading
Accuracy of PM10	≤100µg/m³: ±15µg/m³ 100~1000µg/m³: ±15%Reading
Accuracy of TSP $^{(1)}$	≤100µg/m³: ±20µg/m³ 100~1000µg/m³: ±20%Reading
Data refresh cycle	1s
Power supply	DC 5V±0.1V, ripple wave<50mV
Average Working current	< 150mA
Standby current	< 25mA
Digital output	UART_TTL/I2C (3.3V/5V)
Dimensions	W82*H40.2*D26.3 (mm)
Lifetime	≥3 years
Sampling flow rate	1 L/min(recommended)

Note:

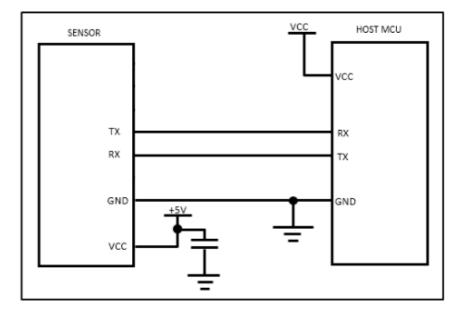
① Wuhan Station traceability system as benchmark. If there is measurement discrepancy in other regions, coefficient correction is needed based on the local dust particle distribution.

Structure and Pin Definition

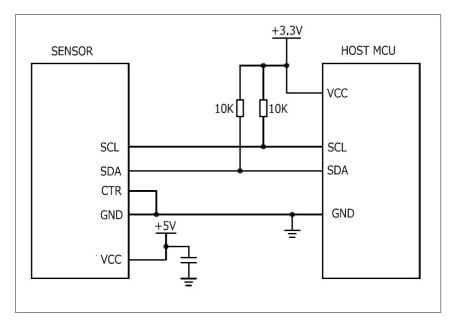
Table 1. Connector Pin Definition

No.	Pin	Description
1	VCC	Power input (+5V)
2	VCC	Power input (+5V)
3	GND	Power input (GND)
4	GND	Power input (GND)
5	TXD /SCL	UART sending (TTL level @3.3V)/I ² C clock
6	RXD/SDA	UART receiving (TTL level @3.3V/5V)/l ² C data
7	CTR	level $@3.3V$ high level or floating is UART communication mode, low level is I ² C communication mode
8	NC	Floating

Connector Description


The interface connector of sensor is A2501WV-8P. The pitch is 2.5mm.

www.gassensor.com.cn



Typical Application Circuit

Case 1. UART TTL 3.3V Output

Case 2. I²C TTL 3.3V Output

Note of Circuit Design

- UART and I²C communication compatibility with 3.3V and 5V level (receiving end).
- Pin 8 is the pin for manufacturer testing, should be floating in the application circuit.

Communication Protocol

• UART Communication Protocol

1. General Statement

- 1) The data in this protocol is all hexadecimal data. For example, "46" for decimal [70].
- 2) [xx] is for single-byte data (unsigned, 0-255); for double data, high byte is in front of low byte.
- 3) Baud rate: 9600; Data Bits: 8; Stop Bits: 1; Parity: No
- 4) It is default by continuously mode after powering on. Working mode will not be saved after powering off.

2. Format of Serial Communication Protocol

Sending format of software:

Start Symbol	Length	Command	Data 1	Data n.	Check Sum
HEAD	LEN	CMD	DATA1	 DATAn	CS
11H	ХХН	ХХН	ХХН	 ХХН	ХХН

Detail description on protocol format:

Protocol Format	Description
Start symbol	Sending by software is fixed as [11H], module respond is fixed as [16H]
Length	Length of frame bytes= data length +1 (including CMD+DATA)
Command	Command
Data	Data of writing or reading, length is not fixed
Check sum	Cumulative sum of data = 256- (HEAD+LEN+CMD+DATA)

3. Command Table of Serial Protocol

Item No.	Function Description	Command
1	1 Read particle measurement result	
2 Open/close particle measurement		0x0C
3	3 Set up and read particle calibration coefficient	
4	Read serial number	0x1F

4. Detail Description of UART Protocol

4.1 Read Particle Measurement Result

Send: 11 02 0B 07 DB

Response: 16 35 0B DF1- DF52 [CS]

Function: Read concentration of particle and particles number.

Note: Read particle concentration (µg/m³)

Data	Description
DF1~DF4	PM1.0 measuring value, unit: µg/m³
DF5~DF8	PM2.5 measuring value, unit: μg/m³
DF9~DF12	PM10 measuring value, unit: μg/m³
DF13~DF16	TSP measuring value, unit: µg/m³
DF17~DF20 Reserved	
DF21~DF24	Reserved
DF25~DF28 >0.3µm particle quantity, unit: pcs/L	
DF29~DF32 >0.5µm particle quantity, unit: pcs/L	
DF33~DF36	>1.0µm particle quantity, unit: pcs/L
DF37~DF40	>2.5µm particle quantity, unit: pcs/L
DF41~DF44	>5.0µm particle quantity, unit: pcs/L
DF45~DF48	>10µm particle quantity, unit: pcs/L
DF49~DF52	Reserved

PM1.0 = DF1*256^3 + DF2*256^2 + DF3*256^1 +DF4
PM2.5 = DF5*256^3 + DF6*256^2 + DF7*256^1 + DF8
PM10 = DF9*256^3 + DF10*256^2 + DF11*256^1 + DF12
TSP =DF13*256^3 + DF14*256^2 + DF15*256^1 + DF16
>0.3µm particle quantity = DF25*256^3 + DF26*256^2 + DF27*256^1 + DF28
>0.5µm particle quantity = DF29*256^3 + DF30*256^2 + DF31*256^1 + DF32
>1.0µm particle quantity = DF33*256^3 + DF34*256^2 + DF35*256^1 + DF36
>2.5µm particle quantity = DF37*256^3 + DF38*256^2 + DF39*256^1 + DF40
>5.0µm particle quantity = DF41*256^3 + DF42*256^2 + DF43*256^1 + DF44
>10µm particle quantity = DF45*256^3 + DF46*256^2 + DF47*256^1 + DF48

DF49: Alarm of sensor module working condition:

Bit	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Alarm definition		1. Laser tube failure alarm		1. Fouling alarm	1. Low temperature alarm	1. High temperature alarm		

DF50, DF51, DF52: Reserved

Note: Part of reserved bit is used for internal testing. Reserved bit is not related to function

4.2 Open/Close Particle Measurement

Send: 11 03 0C DF1 1E CS Response: 16 02 0C DF1 CS Function: Open/ close particle measurement

Note:

1. When sending command, DF1=2 means opening measurement, DF1=1 means closing measurement;

- 2. When receiving response, DF1=2 means measuring opened, DF1=1 means measuring closed;
- 3. When the sensor receives the command of opening measurement, it will be in default continuous measurement mode.

Example:

Send: 11 03 0C 02 1E C0	//open particle measurement
Response: 16 02 0C 02 DA	//module is under particle measurement open status
Send: 11 03 0C 01 1E C1	//close particle measurement
Response: 16 02 0C 01 DB	// module is under particle measurement closed status

4.3 Set up and Read Particle calibration coefficient

Send: 11 0A 14 01 DF1-DF8 CS // Set up particle calibrated coefficient Response: 16 0A 14 01 DF1-DF8 CS Send: 11 01 14 DA // Read particle calibrated coefficient Response: 16 09 14 DF1-DF8 CS Send: 11 02 14 64 75 // Dust calibration coefficient reset Response: 16 02 14 64 70 Function: Read/set up particle calibration coefficient

Note:

4.4 Read Serial Number

Send: 11 01 1F CF Response: 16 0B 1F DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 DF9 DF10 CS Function: Read serial number

Note:

Serial number =(DF1*256+DF2), (DF3*256+DF4), (DF5*256+DF6), (DF7*256+DF8), (DF9*256+DF10) **Example: Response:** 16 0B 1F 00 00 00 7E 09 07 07 0E 0D 72 9E **Serial number:** 126 2311 1806 3442

Communication Protocol

• I²C Communication Protocol

1. Brief Introduction

a. This is an IIC protocol for PM3003S. The sensor module is lower computer, which is not able to initiate communication automatically. Communication is initiated via main controlled board, which reads data and sends control commands.

b. I²C communication clock frequency <=100Khz

2. Communication Common

START: start signal, send by main controlled board;

STOP: stop signal, send by main controlled board;

ACK: acknowledge signal, send by the sensor module if in bold; otherwise, send by main controlled board; NACK: non-acknowledge signal, send by the sensor module if in bold; otherwise, send by main controlled board; Px: receive and send data; send by the sensor module if in bold; otherwise, send by main controlled board.

3. Protocol Detailed Description

1.1 Send Command Data

Send by main controlled board:

START+WRITE+ACK+P1+ACK+P2+ACK...... +P7+ACK+STOP

Data	Byte Content	Description
Device	Sensor address and	
address	read/write command	This byte is 0x50 when write data
P1	0x16	Frame header
P2	Frame length	Number of byte, not including length of device address (From P1 to P7, 7 bytes in total)
P3	Data 1	Control command of the sensor as: Close measurement: 1 Open measurement: 2
P4	Data 2, high byte	
P5	Data 2, low byte	Reserved
P6	Data 3	Reserved
P7	Data check code	Check code= (P1^P2^^P6)

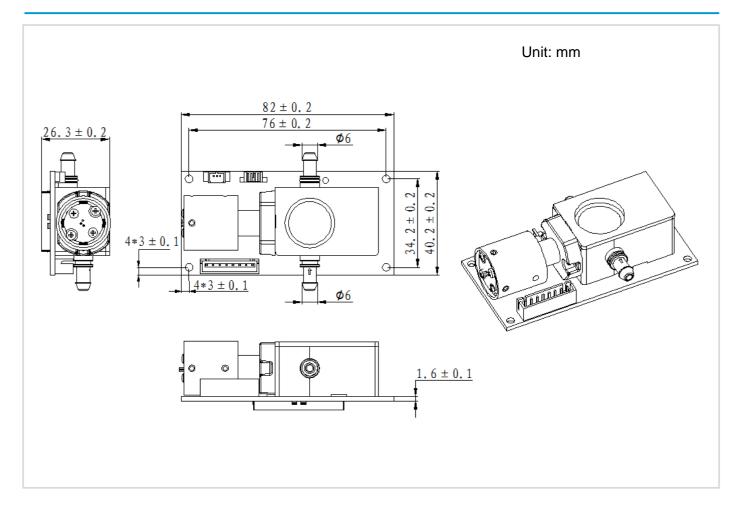
1.1.1 Close Measurement

Send: 16 07 01 00 00 00 10 Function: Close particle measurement

1.1.2 Open Measurement

Send: 16 07 02 00 00 00 13 Function: Open particle measurement

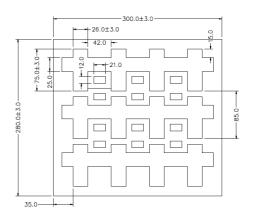
1.2 Read Data Command

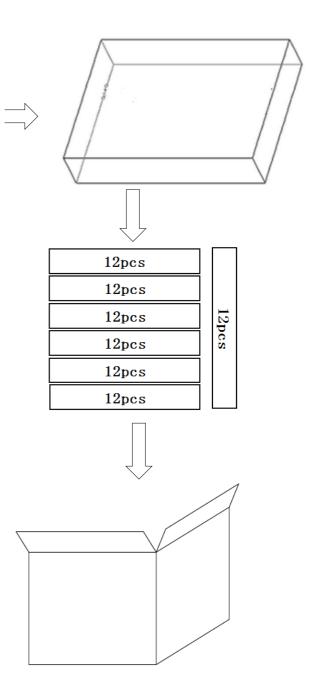

Send by main controlled board: START+READ+ACK+P1+ACK+P2+ACK+.....+P32+NACK+STOP

Data	Byte content	Description
Device	Sensor address and	This huts is 0.054 when read data
address	read/write command	This byte is 0x51 when read data
P1	0x16	Frame header
P2	Frame length	Number of byte, not including length of device address (from P1 to P32, 32 bytes in total)
P3	Sensor status	Status "1" Means sensor is closing. Status "2" Means sensor is under measuring. Status "7" Alarming Status "0x80" Finish measurement
P4	Data 1, high byte	Alarm bit: same as the definition of alarm bit in UART communication protocol
P5	Data 1, low byte	Calibration coefficient: (range: 10~250, corresponding: 0.1~2.5)
P6	Data 2, high byte	
P7	Data 2, low byte	TSP concentration, unit: µg/m³
P8	Data 3, high byte	DN4.0 companying with confer3
P9	Data 3, low byte	PM1.0 concentration, unit: μg/m³
P10	Data 4, high byte	DM2 5 concentration white us/m3
P11	Data 4, low byte	PM2.5 concentration, unit: μ g/m ³
P12	Data 5, high byte	PM10 concentration, unit: μg/m³
P13	Data 5, low byte	
P14	Data 6, high byte	
P15	Data 6,middle byte	>0.3µm particle quantity, unit: pcs/L
P16	Data 6, low byte	
P17	Data 7, high byte	
P18	Data 7, middle byte	>0.5µm particle quantity, unit: pcs/L
P19	Data 7, low byte	
P20	Data 8, high byte	
P21	Data 8, middle byte	>1.0µm particle quantity, unit: pcs/L
P22	Data 8, low byte	
P23	Data 9, high byte	
P24	Data 9, middle byte	>2.5µm particle quantity, unit: pcs/L
P25	Data 9, low byte	
P26	Data 10, high byte	
P27	Data 10, middle byte	>5.0μm particle quantity, unit: pcs/L
P28	Data 10, low byte	
P29	Data 11, high byte	
P30	Data 11, middle byte	>10µm particle quantity, unit: pcs/L
P31	Data 11, low byte	
P32	Data check code	Check code = (P1^P2^^P31)

www.gassensor.com.cn

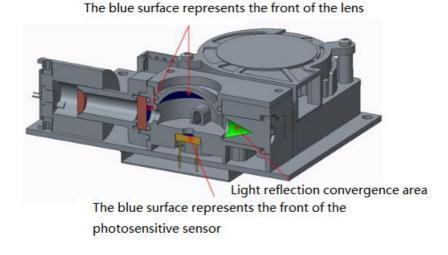
Product Dimension

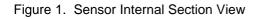

Accessories


Accessories PN	Picture	Description	Function
PMHT01	Heat pipe PCB Board Air Inlet Fixing Holes Sponge	External Heater	To remove water mist in the air and avoid humidity influence to measuring performance
Gasboard-7500K-OAQ		Ultrasonic Flow Meter	To measure air flow rate, measurement range is 0~20L/min
Gasboard-7500H-OPC		Ultrasonic Flow Meter	To measure air flow rate, measurement range is 0~5L/min

More information please contact with Cubic team.

Package Information




Quantity per Tray	Quantity Per Sub-box	Quantity per Cart	Carton Dimensions	Packing Material
12pcs	7pcs	84pcs	W400 * L300 * H320 mm	Red anti-static EPE

Product Installation

When the sensor is installed and used in user's system, it should ensure that the airflow at the sensor's air inlet and outlet is unobstructed. To ensure sensor's measurement accuracy, the surface of sensor sensitive elements as shown in figure 1 shall be protected from dust depositing. It is recommended to install the sensor in user's system following installation recommendation shown in figure 2.

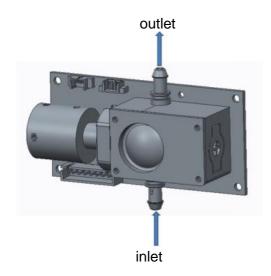


Figure 2. Installation Recommendation

User Attention

% The recommended length of the air inlet duct is less than 20cm, and the recommended material is fluorine rubber.

X It is recommended to use compressed air to clean the sensor regularly during the use of the product to prevent the contamination of flocs, hair, etc. from affecting the sensor detection.

% Sensor is an integral unit. In case of irreversible damage, the sensor cannot be disassembling.

This product is defined as 3R laser product according to GB7247.1-2012 Laser Product Safety with laser radiation inside.
Please avoid direct illumination on the eye. The warning signs are as follows:

After-Sales Services and Consultancy

Cubic Sensor and Instrument Co., Ltd Add: Fenghuang No.3 Road, Fenghuang Industrial Park, Eastlake Hi-tech Development Zone, Wuhan 430205, China E-mail: info@gassensor.com.cn Tel: +86 (0)27 81628827 Fax: +86 (0)27 81628821 Website: http://www.gassensor.com.cn