

SPECIFICATION

Product Name: Ultrasonic Oxygen Sensor Sensor Item No.: Gasboard-8500FS-L240 Gasboard-8500FS-L240H Gasboard-8500FS-L240HL

Version: V0.5 Date: July 01, 2022

Revision

No.	Version	Content	Date
1	V0.1	First Edition	2021-11-19
2	V0.2	Changes on specifications and communication protocol.	2022-04-19
3	V0.3	Modify the calculation of temperature in communication protocol	2022-04-27
4	V0.4	Add baud rate 460,800 in communication protocol	2022-05-19
5	V0.5	Add IIC communication protocol.	2022-07-01

Ultrasonic Oxygen Sensor Gasboard-8500FS Series

Applications

- ♦ Family and Medical Ventilator
- ♦ High-flow Oxygen Therapy Device
- ♦ Respiratory Device, Anesthetic Machine and Vaporizer
- ♦ Gas Detection in Binary Gas (Including O2)

Description

Gasboard-8500FS-L240 series are ultrasonic technology 5-in-1 combined sensor solutions to measure flow rate, oxygen concentration, ambient pressure, temperature and humidity simultaneously with both analog and digital outputs. The flow rate range of Gasboard-8500FS-L240 series can be up to 240L/min. Benefit from ultrasonic technology and principle of TOF (time of flight) measurement, Gasboard-8500FS-L240 series have excellent performances with advantages of high accuracy, fast response, no drift, no need for routine calibration, maintenance-free and long life, etc. The interface design is according to ISO5356 with sealing rings to better meet the customers' installation and use requirements. Gasboard-8500FS-L240 series can be widely used in high-flow nasal cannula oxygen therapy ventilation, positive airway pressure ventilation, anesthetic ventilator and other medical equipment related to breath.

Principle

Flow rate measurement principle: measure the TOF (time of flight) difference between the pulses of ultrasound propagating into and against the direction of the flow to calculate the flow rate.

Concentration measurement principle: when there is a molecular mass difference between the components of binary gas mixture, the sound propagation velocity varies with the composition of the two gases.

Features

- Ultrasonic measurement technology, 5-in-1 combined sensor solution to measure flow rate, oxygen concentration, ambient pressure, temperature and humidity simultaneously
- ♦ Flow rate up to 240L/min
- Ensured accuracy in the full temperature range
- ♦ Continuous monitoring, no drift, no need routine calibration, maintenance-free.
- ♦ Excellent stability, high accuracy, fast response
- ♦ With temperature, humidity and atmosphere pressure compensation
- ♦ No-consuming parts, long lifespan
- Data update time up to 2ms which meets the requirement of fast response to flow for ventilators
- ♦ Support both analog and serial (UART and IIC) outputs
- ♦ CMC, CE, EMC, ROHS, REACH compatibility
- ♦ Biocompatibility with ISO10993, ISO 18562:2017 and USP graded

Specification

Ultrasonic Oxygen Sensor Gasboard 8500FS-L240 Series Specifications					
Model	8500FS-L240	8500FS-L240HL			
Detect Principle	Ultrasonic Technology				
	O2 Concentration: 0%~100% vol				
Detection Range ¹⁾		Flow Rate: 0~240L/min			
Sampling Interval ²⁾	10ms (100 samples per second)	< 2ms (500 samp	les per second)		
	O2 Concentratio	on: Typically, ±2.5%FS, Maximur	n ±3%FS		
Detection Accuracy ³⁾	Flow Rate: ±0.21	/min (<10L/min); ±2.0% reading	(≥10L/min)		
		O2 Concentration: 0.1% vol			
Resolution	Flow Rate: 0.1L/min	Flow Rate: 0	0.01L/min		
	O2 Concentration: 10ms	O2 Concentration: < 2ms			
Data Update Time	Flow Rate: 10ms	Flow Rate: < 2ms			
Pressure Drop	<600Pa (2.41in H ₂ O) @240L/min flow rate				
Working Condition	5~60℃; 0~95%RH	(Non-condensing)	-20~60℃; 0~95%RH (Non-condensing)		
	Long term: -20~70℃; 0~95%RH (Non-condensing)				
Storage Condition	Short term ⁴⁾ : -30~70 ℃; 0~95%RH (Non-condensing)				
Power Supply	DC 4.	75-5.25V, Ripple Wave ≤100mV			
Work Current	Average C	Current <20mA; Peak Current <50	mA		
. . .	O2 Concentration: 200mV~2500mV (0%~100% vol)				
Analog output ⁵⁾	Flow Rate: 200mV~2500mV (0~240L/min)				
Communication	UART_T	TL (3.3V) / IIC (available on reque	st)		
Dimension ⁶⁾		L80*W48*H30mm			
IP Grade		IP54			
Life Span	≥1	5 Years (continuous operation)			

Note:

1) 8500FS-L240 series are calibrated with pure oxygen source and the concentration output is for pure oxygen. In case of a PSA oxygen source, the concentration should be converted using formula (transfer relationship is: sensor reading = (target concentration*1.142)-3.42%, in which target concentration is for PSA oxygen source). Concentration measuring range for PSA oxygen source is 20.5% to 95.6%.

2) Sampling interval and data update time is typically 1.5ms for 8500FS-L240H and 8500FS-L240HL.

3) Typical accuracy is define at 10~40) C;0~40%RH conditions and maximum accuracy is defined at (5~45) C;0~95%RH (non-condensing) conditions. Typical accuracy of O2 concentration meets ISO 80601-2-55 requirements.

4) Short term storage refers to temporary conditions for some special scenarios like short distance transportation, no longer than 2 hours.

5) Sensor's analog output of concentration is for pure oxygen that 200mV corresponds to concentration 0%, 2500mV corresponds to 100% and 683mV in air by default corresponds to oxygen concentration 21%. In case of a PSA oxygen source, first convert the analog output to pure oxygen concentration in percentage by the linear relationship between the output voltage and concentration, then transfer the pure oxygen concentration to PSA oxygen concentration using formula mentioned in note 1).

6) Outside diameter of the connector is 22mm which meets the requirement of ISO 5356.

www.gassensor.com.cn

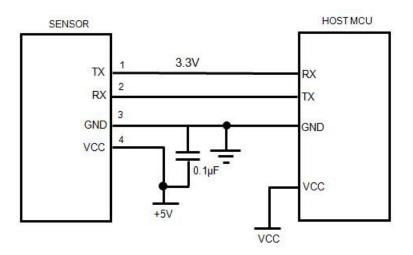
Pin Definition

Drawing 1 Gasboard-8500FS-L240 Pin Definition

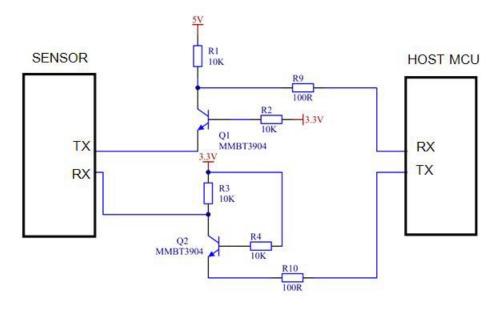
Table 2 Connector Pin Definition

J2			J1		
No.	Pin	Description	No.	Pin	Description
1	Vcc	5V±5%, External Power Supply Input Pin	1	GND	Power Ground
2	Rx / SDA	UART Receive / IIC Data (3.3V)	2	02	200mV – 2500mV output pin, 200mV corresponds to 0% Vol 2500mV corresponds to 100% Vol
3	Tx / SCL	UART Send / IIC Clock (3.3V)	3	Flow	200mV – 2500mV output pin, 200mV corresponds to 0 L/min 2500mV corresponds to 240 L/min
4	GND	Power Ground	4	Vcc	5V±5%, External Power Supply Input Pin
command mode oth	Remark: Sensor enters UART mode if it receives a UART command within 5 seconds after powered on and enters IIC mode otherwise. IIC communication is only available on 8500FS-L240 on request.		Remark: The function is customized		
		J7	,		
No.	Pin	Description			
1	GND	Power Ground			
2	LED1	Alarm Output 1			
3	LED2	Alarm Output 2			
4	LED3	Alarm Output 3			
5	Vcc	Power Output: 3.3V			
Remark:	Remark: This function is customized				

Table 3 Connector Description


Port	Terminal	Connector	Pin Pitch
J1	PH2.0-4A	PH2.0-4P	2.00mm
J2	PH2.0-4A	PH2.0-4P	2.00mm
J7	PH2.0-5A	PH2.0-5P	2.00mm

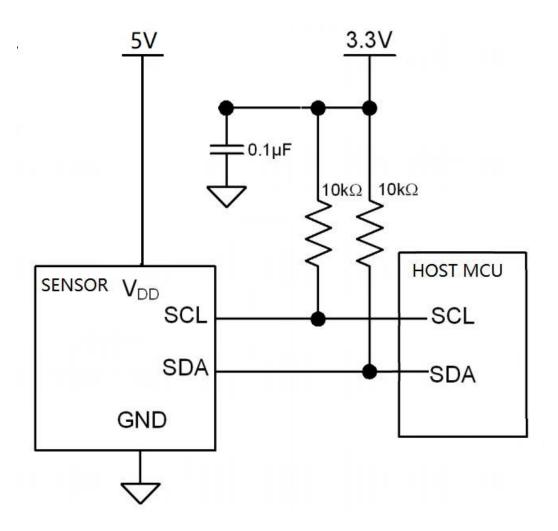
www.gassensor.com.cn


Reference Circuit

Application Scenario 1: UART TTL 3.3V Output

Drawing 2 UART Communication Connection Circuit

Application Scenario 2: UART TTL 3.3V to 5V Communication Circuit



Drawing 3 UART 3.3V to 5V Communication Connection Circuit

Reference Circuit

Application Scenario 3: IIC communication Circuit

Drawing 4 IIC 3.3V Communication Connection Circuit

UART Communication Protocol

1. Protocol Overview

- (1) Baud Rate: For 8500FS-L240: 9600 bps by default, Data Bits: 8, Stop Bits: 1, Parity: No, Flow Control: No; For 8500FS-L240H/HL: 460,800 bps by default, Data Bits: 8, Stop Bits: 1, Parity: No, Flow Control: No Note: Some device may lose data when receiving data, in this case, the user can send change baud rate command to switch to low-speed mode: baud rate 9600 bps;
- (2) The protocol data are hexadecimal data. For example, "46" is [70] in decimal;
- (3) [xx] is single-byte data (unsigned,0-255); For double-byte data, the higher byte is ahead of lower byte;
- (4) The sensor will send data actively by default.

2. Serial Communication Protocol Format

Host Send Format

Start Symbol	Length	Command No	Data 1	 Data n	Check Sum
HEAD	LEN	CMD	DATA1	 DATAn	CS
11H	XXH	XXH	XXH	 XXH	XXH

Protocol Format Description

Protocol Format	Description	
Start Symbol	PC sending is fixed to [11H], module response is fixed to [16H]	
Length	Byte length of the frame, =data length+1 (include CMD+DATA)	
Command No	Command number	
Data	Read or written data, the length is variable	
Check Sum	The sum of data accumulation, =256-(HEAD+LEN+CMD+DATA)	

3. Serial Protocol Command List

No	Functions	Command
1	Actively send data by default	/
2	Read the measurement result	0x01
3	Read the software version number	0x1E
4	Inquiry instrument serial number	0x1F
5	Change baud rate	0x08
6	Read temperature, humidity and ambient pressure	0x03

4. Detailed Description

4.1 Default Active Data

The sensor will send data actively by default.

Response: 16 09 01 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 [CS]

Function: Read the measurement results

Description:

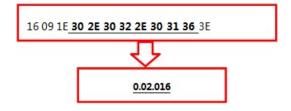
O2 Concentration = (DF1*256 + DF2) /10	(Vol %)	
Gas Flow Value = (DF3*256 + DF4) /10	(L/min)	(For 8500FS-L240)
Gas Flow Value = (DF3*256 + DF4) /100	(L/min)	(For 8500FS-L240H and 8500FS-L240HL)
Gas Temperature Value = (DF5*256 + DF6) /10	– 50 (°C)	(Temperature in the sensor's gas chamber)

Humidity value = (DF7*4)/10	(RH%)	(Humidity in the sensor's gas chamber)
Ambient Pressure value = (DF8*5) / 10	(KPa)	(The ambient pressure outside of the chamber)
Response Example:		
Response: 16 09 01 00 CD 00 FF 02 EE 4B C/	4 0F	
Remark:		
Hexadecimal Convert into Decimal: CD is 205;	EE is 238	8; 4B is 75; CA is 202
O2 Concentration = (0*256 + 205)/10 = 20.5		(20.5%)
O2 Flow Value = (0*0+0)/10 = 0		(L/min)
O2 Temperature Value = (2*256+238)/10-50 = 2	25.0	(25.0℃)
O2 Humidity Value = (75*4) / 10 = 30		(30%RH)
Ambient Pressure value = (202*5) / 10 = 101		(101Кра)
4.2 Read the Measurement Result		
Send: 11 01 01 ED		
Response: 16 09 01 DF1 DF2 DF3 DF4 DF5 D	F6 DF7 D)F8 [CS]
Function: Read the measurement results		
Description:		
O2 Concentration = (DF1*256 + DF2) /10	(Vol %)	
Gas Flow Value = (DF3*256 + DF4) /10	(L/min)	(For 8500FS-L240)
Gas Flow Value = (DF3*256 + DF4) /100	(L/min)	(For 8500FS-L240H and 8500FS-L240HL)
Gas Temperature Value = (DF5*256 + DF6) /10	– 50 (°℃)	(Temperature in the sensor's gas chamber)
Humidity value = (DF7*4)/10	(RH%)	(Relative humidity in the sensor's gas chamber)
Ambient Pressure value = (DF8*5) / 10	(KPa)	(The ambient pressure outside of the sensor chamber)

Remark:

The O2 concentration here is for pure oxygen source, for PSA oxygen source, then the transfer relationship is: Sensor reading = (target concentration*1.142)-3.42%, in which target concentration is for PSA oxygen source.

4.3 Read the Software Version Number


Send: 11 01 1E D0

Response: 16 09 01 DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 [CS]

Function: Read the module's firmware version

Description: DF1-DF8 refers to the ASCII code of particular version number

For example: When module's firmware version number is 0.02.016, response data:

4.4 Inquiry Instrument Serial Number

Send: 11 01 1F CF
Response: 16 0B 1F (SN1) (SN2) (SN3) (SN4) (SN5) [CS]
Function: Read the module's serial number
Description: Outputs the module's serial number. SNn range is 0~9999, 5 integers constitute a 20-bit serial number.

4.5 Change Baud Rate

Send: 11 02 08 0X [CS] Response: [ACK] 02 08 0X [CS] Function: Change baud rate of the serial output Description:

For 8500FS-L240:

When 0X=02, change baud rate from 9,600 bps to 115,200 bps;

When 0X=03, change baud rate from 115,200 bps to 9,600 bps;

For 8500FS-L240H and 8500FS-L240HL:

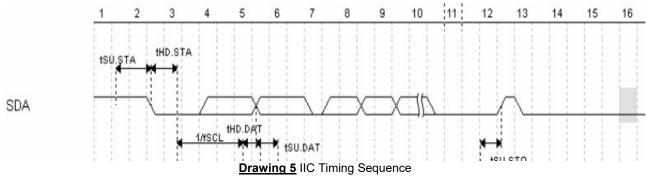
When 0X=00, change baud rate from 460,800 bps or 1,000,000 bps to 9,600 bps; When 0X=01, change baud rate from 9,600 bps or 1,000,000 bps to 460,800 bps; When 0X=02, change baud rate from 9,600 bps or 460,800 bps to 1,000,000 bps; Command will take effective after a power off and on operation.

4.6 Read Temperature, Humidity, Ambient Pressure

Send: 11 01 03 EB	
Response: 16 07 03 DF1 DF2 DF3 DF4 DF5 DF6	6 [CS]
Function: Read temperature, humidity and ambie	ent pressure results
Description:	
Temperature value = (DF1*256 + DF2) / 10	(°C)
Humidity value = (DF3*256 + DF4) / 10	(%)
Ambient pressure value = (DF5*256 + DF6) / 10	(kPa)
Response Example:	
Response: 16 07 03 00 C8 01 67 03 FD B0	
Remark: Hexadecimal Convert into Decimal: C8	is 200, [67] is 103, FD is 253;
Temperature = (0*256 + 200) / 10 = 20	(20 °C)
Humidity = (1*256 + 103) / 10 = 35.9	(35.9%RH)
Ambient Pressure = (3*256 + 253) / 10 = 102.1	(102.1kPa)

IIC Communication Protocol

1. Timing Sequence


1.1 IIC Protocol Overview

- a. Utilize standard IIC timing sequence, clock frequency is 10khz \sim 400khz
- b. Utilize Big-Endian system, MSB first.

1.2 IIC Timing Characteristics

Symbol	Parameter			Unit
Symbol	Min	Тур.	Max	Onit
fSCL (SCL clock frequency)	10	100	400	KHZ
tHD.STA (Start condition Hold Time)		0.6		us
tSU.STA (Start condition Setup Time)		0.6		us
tHD.DAT (Data Hold Time)		0		ns
tSU.DAT (Data Setup Time)		250		ns
tSU.STO (Stop condition Setup Time)		4		us

Note: SCL clock frequency generates from master with range 10khz~400khz

2. IIC Protocol Commands

2.1 Command Format

Send: [CMD][DF0] [DFn]

[CMD] Command, used to distinguish from different commands

[DF0][DFn] Parameters of the command, optional.

Response: [DF0].....[DFn][CS]

[DF0].....[DFn] Valid data

[CRC8] CRC8 check

2.2 Command Description

The IIC slave address is represented by a 7-digit binary value. By default, the IIC slave address is set to 64 (0x40 or 1000000b). The address is always followed by a write bit (0) or read bit (1). Therefore, the hexadecimal IIC header for read access to the sensor is 0x81 and write access to the sensor is 0x80.

There are various commands as shown below to get different results from the sensor.

No.	Function	CMD	Description
1.	Inquiry flow result	0x1000	Read flow rate
2.	Inquiry O2 concentration result	0x2000	Read O2 concentration
3.	Inquiry atmosphere results	0x3000	Read temperature, humidity, ambient pressure

2.2.1 Inquiry flow result

IIC master writes command 0x1000 to sensor with salve address 0x40(1000000b) + write bit(0b) = 0x80:

START	0x80	ACK	0x10	ACK	0x00	ACK
-------	------	-----	------	-----	------	-----

IIC master reads results from sensor with slave address 0x40(100000b) + read bit(1b) = 0x81:

START 0x81 A	ACK DF0	АСК	DF1	ACK	CRC8	NACK	STOP
--------------	---------	-----	-----	-----	------	------	------

Command description:

1. Upon receiving command 0x1000, sensor enter flow rate inquiry mode after which IIC master will read the same format data until the sensor receives a new command or reset.

2. Data interpretation is shown as below:

Identifier	Data	Decimal range	Corresponding value	Multiple
Flowrate value	[DF0] [DF1]	0~2400	0~240L/min	10

Flow rate = ([DF0] * 256 + [DF1]) / 10;

2.2.2 Inquiry O2 concentration result

IIC master writes command 0x2000 to sensor with salve address 0x40(1000000b) + write bit(0b) = 0x80:

START 0x80 ACK	0x20	ACK	0x00	ACK
----------------	------	-----	------	-----

IIC master reads results from sensor with slave address 0x40(100000b) + read bit(1b) = 0x81:

START 0x81 ACK DF0 ACK DF1 ACK CRC	8 NACK STOP
------------------------------------	-------------

Command description:

1. Upon receiving command 0x2000, sensor enter O2 concentration inquiry mode after which IIC master will read the same format data until the sensor receives a new command or reset.

2. Data interpretation is shown as below:

Identifier	Data	Decimal range	Corresponding value	Multiple
O2 conc. value	[DF0] [DF1]	0~1000	0~100%	10

O2 conc. = ([DF0] * 256 + [DF1]) / 10;

Ρ

Communication Protocol

2.2.3 Inquiry atmosphere results

I	IIC master writes command 0x3000 to sensor with salve address 0x40(1000000b) + write bit(0b) = 0x80:									
	START	0x80	ACK	0x30	ACK	0x00	ACK			
I	IIC master reads results from sensor with slave address 0x40(1000000b) + read bit(1b) = 0x81:									

S	0x81	Α	DF0	Α	DF1	А	DF2	Α	DF3	А	CRC	NA	

P: STOP

Command description:

Note: S: Start

1. Upon receiving command 0x3000, sensor enter atmosphere results inquiry mode after which IIC master will read the same format data until the sensor receives a new command or reset.

2. Data interpretation is shown as below:

A: ACK NA: NACK

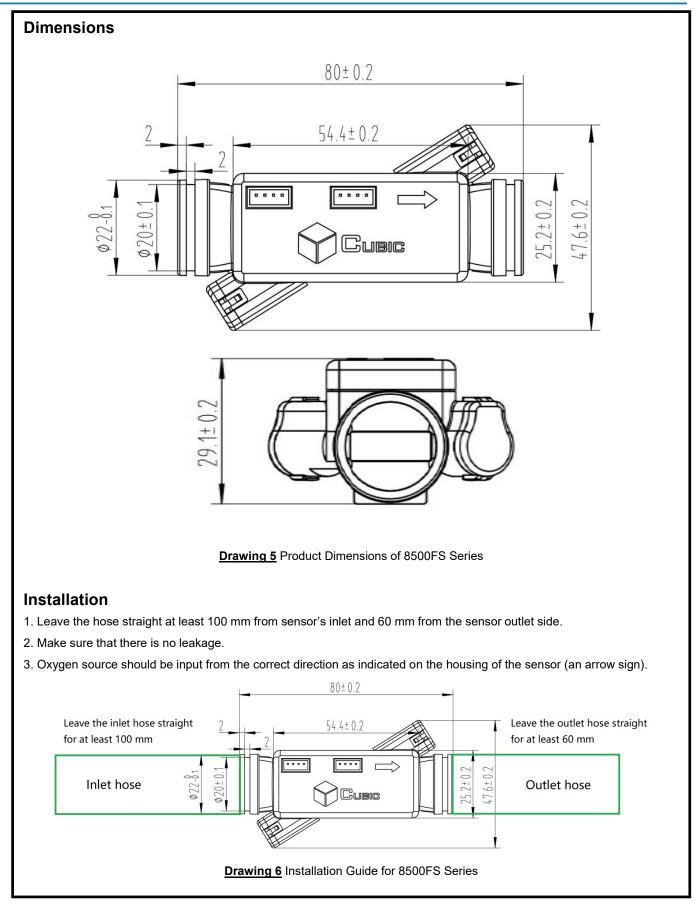
Identifier	Data	Decimal range	Corresponding value	Multiple
Temperature value	[DF0] [DF1]	1000~19000	-40~140 ℃	10
Humidity value	DF2	0~250	0-100%	10
Atm. pressure value	DF3	0-1700	0-850Кра	10

Temperature = ([DF0] * 256 + [DF1]) / 10 - 50;

Humidity = (DF2 / 10) * 4;

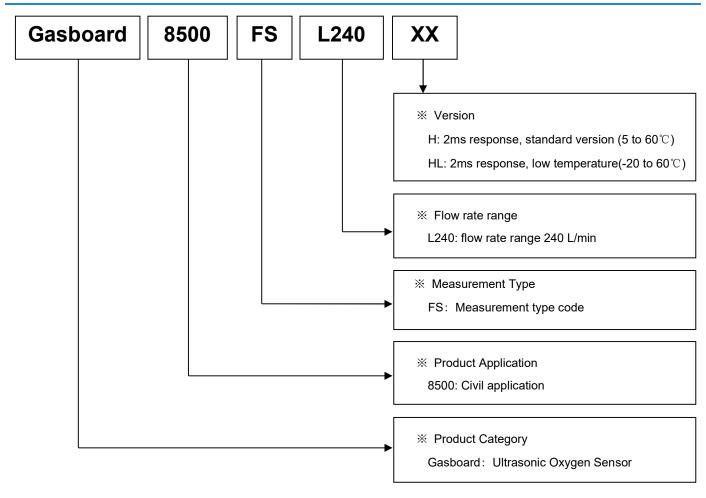
Atmospheric pressure = (DF3 / 10) * 5;

2.2.4 CRC-8 redundant data transmission

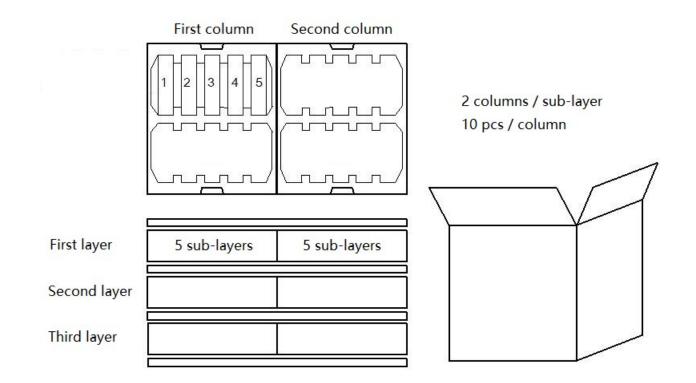

CRC (Cyclic Redundancy Check) is a data transmission error detection function, which performs polynomial calculation on data (using polynomial, modulo 2 division of data), and attaches the obtained result to the back of the frame for transmission and reception. The device also performs a similar algorithm after receiving it (it still uses the same polynomial to divide the received data modulo 2, but there is no remainder to be considered as correct transmission) to ensure the correctness and integrity of data transmission. CRC uses the principle of division and remainder to realize the function of error detection which is clear in principle and simple in implementation. The 8500FS-L240 sensor implements the CRC-8 standard based on the generator polynomial x8 + x5 + x4 +1.

Example C codes:

```
unsigned char crc8 (unsigned char *ptr, unsigned char len)
ł
    unsigned char i;
    unsigned char crc=0xFF;
    while (len--)
    ł
        crc ^= *ptr++;
        for (i=8; i>0; --i)
        £
            if (crc & 0x80)
                crc = (crc << 1) ^ 0x31;
            else
                crc = (crc << 1);
        }
    }
    return (crc);
}
```



Dimensions and Installation



Product Code Instruction

Packing Information

Qty/Layer	Small Tray Qty	Big Tray Qty	Sensor per Carton	Carton Dimension	Packing Material
20pcs	5 sub-layers	3 layers	150pcs	W395 * L320 * H470mm	Anti-static Plastic Tray

Remark:

Packing specification might be updated without prior notice.

User Attention

Please pay attention to below:

- (1) Install the sensor as far away as possible from the heat source and heat dissipation outlet of the compressor, and install the sensor as close as possible to the oxygen outlet, and install a one-way valve to prevent the water from humidifying glass from entering sensor.
- (2) In order to ensure reliability and long service life, do not use or store the sensor in a place where the temperature is higher than the rated temperature, and do not use the sensor in an environment where the voltage is higher than the rated voltage of the sensor.
- (3) Without necessary compensations, please do not use the sensor in the environments of high humidity water steam, abnormal pressure, and low temperature.
- (4) The product shall not be used or stored in a place with corrosive gas, especially hydrogen sulfide gas, acid, alkali, salt or similar. The products stored in the warehouse should be stored in normal temperature and humidity, and avoid direct sunlight.
- (5) When there is a problem with the Cubic's products, please contact Cubic team in time; the sensor must not be disassembled privately, and Cubic will not bear any consequences if it is damaged by disassembled privately.

Consultancy & After-sales Service

Tel: 86-(0)27-81628827 Fax: 86-(0)27-87401159 Address: Fenghuang No.3 Road, Fenghuang Industrial Park, Eastlake Hi-tech Development Zone, Wuhan, China Postal Code: 430205 Website: http: //www.gassensor.com.cn E-mail: info@gassensor.com.cn