

SPECIFICATION

Product Name: Laser Particle Sensor Module

Item No.: PM2105L

Version: V0.1

Date: March 21, 2022

Revision

No.	Version	Content	Date
1	V0.1	The first edition	2022.3.21

Laser Particle Sensor Module

PM2105L

Applications

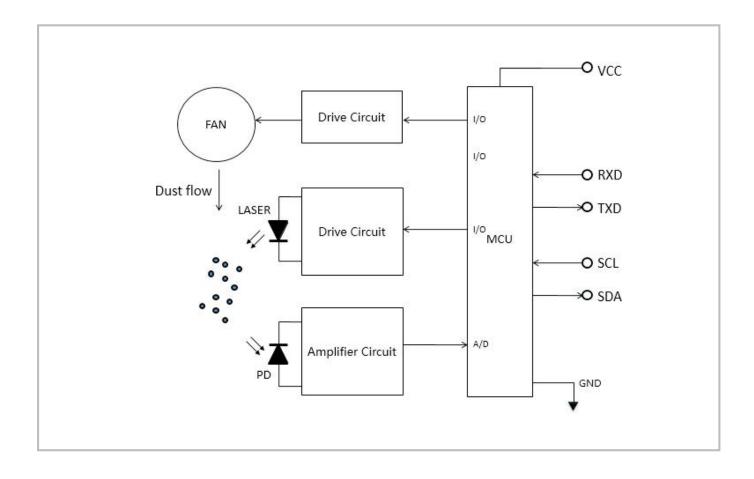
- Air purifier
- Air quality monitor
- Air conditioner
- Ventilation system
- Consumer electronic products
- Environmental monitoring

Description

PM2105L is a laser particle sensor module for indoor use based on laser scattering technology. This sensor can measure particle concentration size between 0.3µm~10µm exactly and output particle mass concentration PM1.0, PM2.5, PM10 in µg/m³ directly via mathematical algorithm and scientific calibration.

Features

- The smallest size of available measurement: 0.3µm
- Real-time output PM1.0, PM2.5, PM10 in µg/m³ available
- High accuracy, high sensitive and quick response (≤8s)
- Signal output optional: UART, I²C, PWM
- RoHS and Reach compliant
- Air inlet and outlet on different side

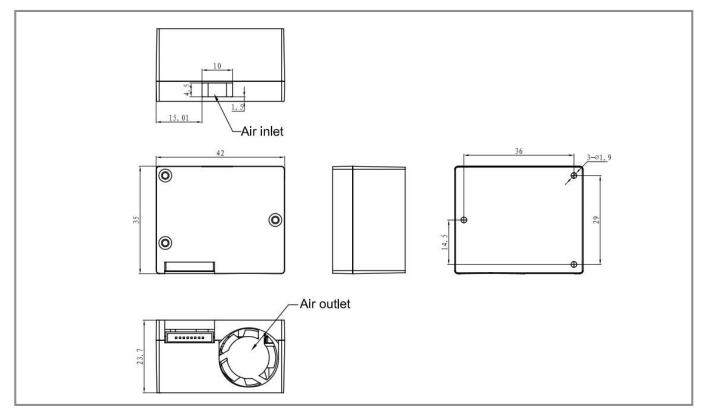

Working Principle

Sampling by the internal pressure which occurs by fan, when sampling particles pass through light beam (laser), there will be light scattering phenomenon. Scattered light will be converted into electrical signal (pulse) via photoelectric transformer. The bigger particles will obtain stronger pulse signal (peak value). Through peak value and pulse value quantity concentration of particles in each size can be calculated. Thus, real-time measured data is obtained through measuring quantity and strength of scattered light.

Specifications

Laser Particle Sensor Specification						
Operating principle	Laser scattering					
Measured particle range	0.3µm ~ 10µm					
Measurement range	0~1000µg/m³					
Resolution	1µg/m³					
Working condition	-10°C ~ 60°C, 0-95%RH (non-condensing)					
Storage condition	-40°C ~ 80°C, 0-95%RH (non-condensing)					
Measurement accuracy for PM1.0&PM2.5	0 ~100μg/m³, ±10μg/m³ >100μg/m³, ±10% of reading Condition: 25±2°C, 50±10%RH, Reference instrument: GRIMM, Dust source: Cigarette					
Measurement accuracy for PM10	$0 \sim 100 \mu g/m^3$, $\pm 30 \mu g/m^3$ 101 $\sim 1000 \mu g/m^3$, $\pm 30\%$ of reading Condition: $25 \pm 2^{\circ}$ C, $50 \pm 10\%$ RH, Reference instrument: GRIMM Dust source: Cigarette					
Response time	1sec					
Time to first reliable reading	4 sec					
Power supply	DC 5V±0.1V Ripple wave<50 mV					
Working current	<53 mA					
Standby current	<5 mA					
Dimensions	42×35×23.7 mm					
Digital output 1 (default)	UART_TTL_3.3V(default) I²C_3.3V/5V(default)					
Digital output 2	PWM (customized)					
Output method	Default by active output after powering on, sampling time interval should be over 1,000 ms					
MTTF	37,297 hrs (continuous operation)					

Internal Architecture Description



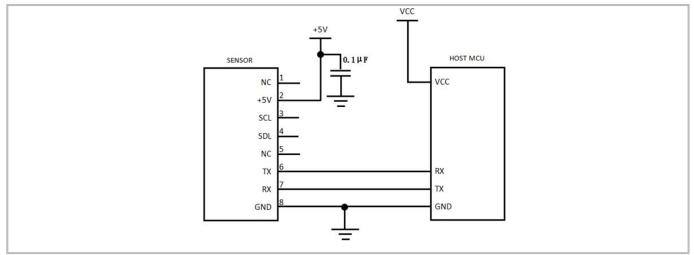
When the fan works, it will generate airflow. When the particles in the sampled gas pass through the beam of the light source (laser), a light scattering phenomenon occurs, and the scattered light is converted into an electrical signal (ie, a pulse) by the photoelectric transformer. The larger the particle size, the larger the amplitude of the pulse signal outputs.

The number of particles of different sizes is calculated by comparing the peak value with the predetermined threshold value, and the mass concentration value is obtained by a professional algorithm. By testing the intensity of the scattered light, real-time test data is obtained.

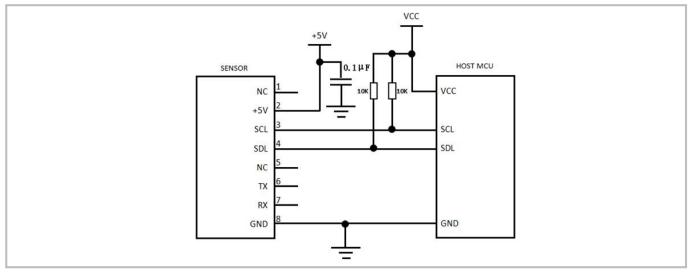
Dimensions and Connector

1. Dimensions (Unit mm, tolerance ±0.2 mm)

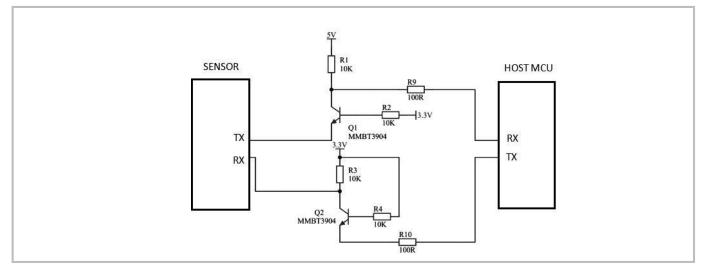
2. I/O Connector Pinout

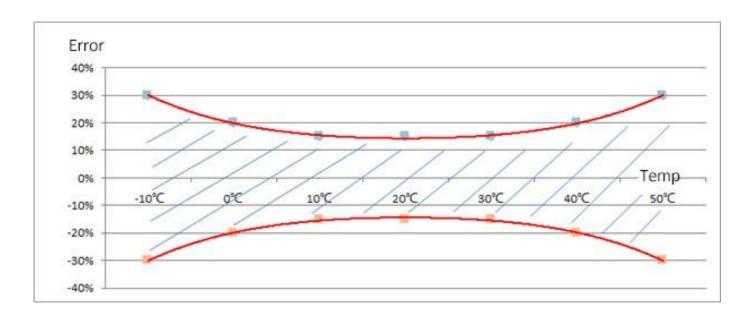

See	No.	Pin	Description
	1	NC	NC
Detail A	2	5V	Power input (+5V)
	3	SCL	I ² C clock (3.3V/5V)
	4	SDA	l²C data (3.3V/5V)
	5	NC	Vacant (Do not connect)
87654321	6	TXD	UART-TX output (0-3.3V)
	7	RXD	UART-RX input (0-3.3V)
Detail A	8	GND	Power input (ground terminal)

The interface connector is located at the side of the sensor. Corresponding female plug part number is SM08B-GHS-TB from JST. The pitch is 1.25mm.


The connection cable with female connector at both ends can also be customized.

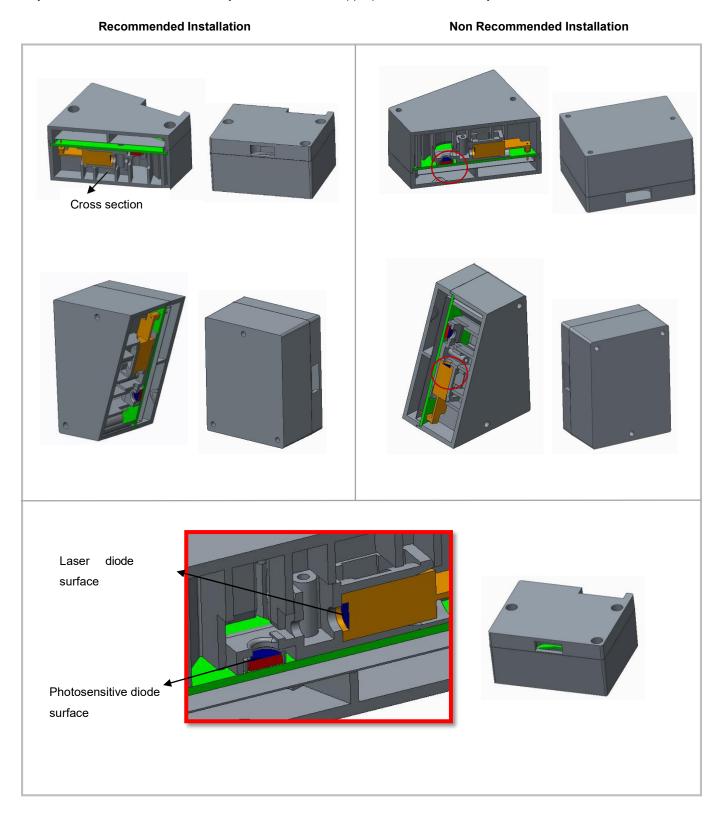
Typical Application Circuit


Case 1. UART3.3V Application


Case 2. I²C Application

Case 3: 5V-3.3V Level Shift, RX, TX Level Shift

Temperature Influence Curve


Particle measured error: under 25 ± 2 °C, $0\sim1,000\mu$ g/m³, consistency and accuracy of PM1.0/PM2.5 is either $\pm15\%$ reading or $\pm15\mu$ g/m³, the bigger one is considered.

Temperature influence coefficient: 0.5%/°C ~ 1%/°C or 0.5μ g/m³/°C ~ 1μ g/m³/°C, the bigger one is considered.

Product Installation

•When install PM2105L sensor module in your system or equipment, please make sure that the air inlet and air outlet are unobstructed. And there is no huge airflow face to air inlet and air outlet.

• In order to avoid dust deposition on the surface of sensitive component (laser diode and photosensitive diode), which may affect the measurement accuracy of the sensor, the appropriate installation ways are recommended as below.

User Attention

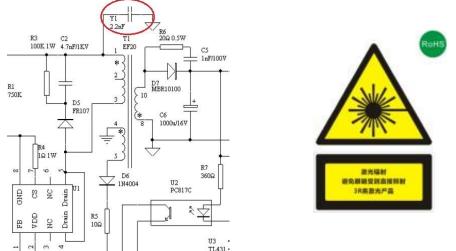
• The best installation way is to make the surface of air inlet and outlet of the sensor clings to the air vent in the inner wall of the user device that communicates with the outside. If it's not possible, then an air isolation structure between air inlet and air outlet is necessary to avoid the air back flow in the user's device.

•Air vent size on the internal wall of user's device for airflow should be bigger than the size of air inlet of the sensor.

•For purification products, sensor cannot be installed in the purifying air duct. If it's not possible, it's necessary to design a separate structure for sensor installation to isolate the sensor from air purifier duct.

•For purifier and detector device, sensor should be installed above 20cm higher than floor to avoid contamination of large dust particles or even flocs near the ground entering the sensor, which will influence the measurement.

•Sensor should be prohibited from using for outdoor inspection equipment. Dust storms, rain, snow, and willow flocs can have a significant impact on unprotected sensors.


• It is for household electronics products. For application of medical, mining, disaster preparedness, which needs high security and high dependence, this sensor is not suitable.

-Avoid using the sensor under the condition with strong magnetic, such as situation close to stereo speaker, microwave oven, induction cooking.

• There is no high pressure transient protection circuit of the sensor. The power supply of the sensor should be stable and low noise. Please refer to the working voltage in specification table.

•The sensor needs 5V power supply because the fan needs a 5V power to drive. But all other data communication and control pins require 3.3V as a high level. Therefore, the main board MCU communication with the sensor should be the 3.3V communication level. If the main board MCU is 5V communication level, then it need to connect 5V to 3.3V level conversion chips or circuits outside the communication port (RX, TX) and control port (RET, RESET).

• If isolated switch power supply is adopted to obtain DC power, please control the capacitance between the DC ground and the AC ground below 2.2nF and withstand voltage reaches to 3KV.

This product is defined as 3R laser product according to 《GB7247.1-2012 laser product safety》 with laser radiation inside. Please avoid direct exposure to your eyes. Warning sign is as shown above.

UART Communication Protocol

1. General Statement

- 1) The data in this protocol is all hexadecimal data. For example, "46" for decimal [70].
- 2) [xx] is for single-byte data (unsigned, 0-255); for double data, high byte is in front of low byte.
- 3) Baud rate: 9600; Data Bits: 8; Stop Bits: 1; Parity: No

2. Format of Serial Communication Protocol

Sending format of software:

Start Symbol	Length	Command	Data 1	 Data n.	Check Sum
HEAD	LEN	CMD	DATA1	 DATAn	CS
11H	XXH	ХХН	XXH	 XXH	ХХН

Detail description on protocol format:

Protocol Format	Description
Start symbol	Sending by software is fixed as [11H], module respond is fixed as [16H]
Length	Length of frame bytes= data length +1 (including CMD+DATA)
Command	Command
Data	Data of writing or reading, length is not fixed
Check sum	Cumulative sum of data = 256- (HEAD+LEN+CMD+DATA)

3.Command Table of Serial Protocol

Item No.	Function Description	Command
1	Read particle measurement result	0x0B
2	Open/close particle measurement	0x0C
3	Set up and read particle measurement time	0x0D
4	Close/open laser diode	0x08
5	Read software version number	0x1E
6	Read serial number	0x1F

4. Detail Description of RS232 Protocol

4.1 Read Particle Measurement Result

Send: 11 02 0B 07 DB Response: 16 35 0B DF1- DF52 [CS] Function: Read concentration of particle and particles number.

Note: Read particle concentration (ug/m3) and particles number (pcs/0.1L) PM1.0 GRIMM mass concentration = DF1*256^3 + DF2*256^2 + DF3*256^1 + DF4 PM2.5 GRIMM mass concentration = DF5*256^3 + DF6*256^2 + DF7*256^1 + DF8 PM10 GRIMM mass concentration = DF9*256^3 + DF10*256^2 + DF11*256^1 + DF12

DF49: Alarm of sensor module working condition:

Bit	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Alarm					1: low working	1: high working	1: Fan at low	1: Fan at high
definition					temperature	temperature	revolving speed	revolving speed

DF13-DF48 DF50-DF52: Reserved

Note: Part of reserved bit is used for our internal testing. The data changeable of reserved bit is nothing related to Function.

4.2 Open/Close Particle Measurement

Send: 11 03 0C DF1 1E CS Response: 16 02 0C DF1 CS Function: Open/ close particle measurement

Note:

- 1. When sensor is power-on, it starts measuring.
- 2. When sending command, DF1=02 means opening measurement, DF1=01 means closing measurement;
- 3. When receiving response, DF1=02 means measuring opened, DF1=01 means measuring closed;

Example:

Send: 11 03 0C 02 1E C0// Open particle measurementResponse: 16 02 0C 02 DA//module is under particle measurement open status

Send: 11 03 0C 01 1E C1// Close particle measurementResponse: 16 02 0C 01 DB// module is under particle measurement closed status

4.3 Set up and Read Particle Calibrated Coefficient

Send: 11 02 07 DF1 [CS] // Set up particle calibrated coefficient
Send: 11 01 07 E7 // Read particle calibrated coefficient
Response: 16 02 06 DF1 [CS]
Function: Read/set up particle calibrated coefficient

Note:

1. Range 70~150 Corresponding coefficient: 0.7~1.5

Description:

1. When there is difference between standard device, calibrated coefficient can be set to correct the final value.

2. When calibrated coefficient is set, the value of PM1.0, PM2.5 and PM10 will be all corrected by this coefficient.

4.4 Close/Open Laser Diode

Send: 11 02 08 04 E1// Close laser diode Send: 11 01 08 E6 // Read status Response: 16 02 08 04 DC

Note:

When laser diode is closed, the sensor will stop measuring but the FAN will stay working. The measuring data will keep the same with the last time measured data. If to open the laser diode again, you can use "Open/ close particle measurement' command.

4.5 Read Software Version Number

Send: 11 01 1E D0 Response: 16 0E 1E DF1~DF13 [CS] Function: Read software version

Note:

Software version="DF1~DF13" Should change the HEX code to ASCII code.

Example:

HEX code: 16 0E 1E 50 4D 20 56 31 2E 32 36 2E 35 2E 32 38 E9 ASCII code: PM V1.26.5.28

4.6 Read Serial Number

Send: 11 01 1F CF Response: 16 0B 1F DF1 DF2 DF3 DF4 DF5 DF6 DF7 DF8 DF9 DF10 CS Function: Read serial number

Note:

Serial number =(DF1*256+DF2), (DF3*256+DF4), (DF5*256+DF6), (DF7*256+DF8), (DF9*256+DF10)

Example:

Response: 16 0B 1F 00 00 00 7E 09 07 07 0E 0D 72 9E Serial number: 126 2311 1806 3442

www.en.gassensor.com.cn

I²C Communication Protocol

1. Brief Introduction

a. This is an I²C protocol for PM2105L. The sensor module is lower computer, which is not able to initiate communication automatically. Communication is initiated via main controlled board, which reads data and Sends control commands.

b. Communication clock frequency <=100Khz.

2. Communication Common Description

START: start signal, send by main controlled board;

STOP: stop signal, send by main controlled board;

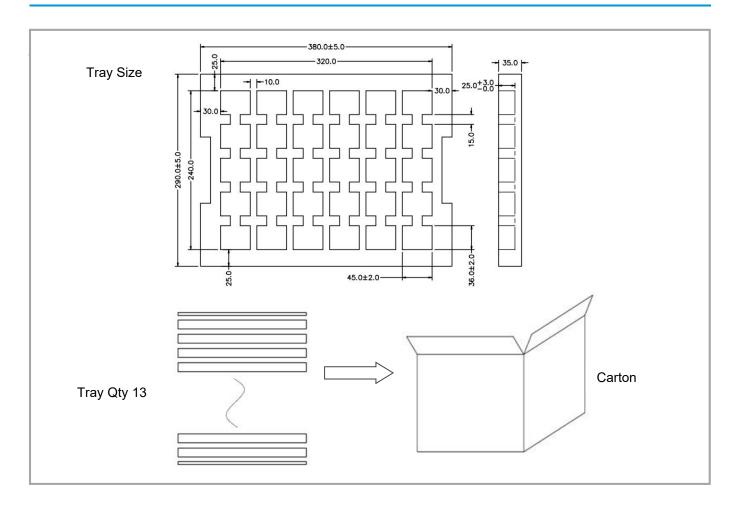
ACK: acknowledge signal, send by the sensor module if in bold; otherwise, send by main controlled board; NACK: non-acknowledge signal, send by the sensor module if in bold; otherwise, send by main controlled board; Px: receive and send data; send by the sensor module if in bold; otherwise, send by main controlled board.

3. Protocol Detailed Description

3.1 Send Command Data

Send by main controlled board:

START+WRITE+ACK+P1+ACK+P2+ACK...... +P7+ACK+STOP


Data	Byte Content	Description
Device address	Sensor address and read/write command	This byte is 0x50 when write data
P1	0x16	Frame header
P2	Frame length	Number of byte, not including length of device address (From P1 to P7, 7 bytes in total)
P3	Data 1	Set up calibration coefficient: 6 Close laser diode : 7
P4	Data 2, high byte	Set up measuring time: (range: 180~64800) unit: second.
P5	Data 2, low byte	Calibration coefficient: (Range: 70~150, Corresponding: 0.7~1.5)
P6	Data 3	Reserved
P7	Data check code	Check code= (P1^P2^^P6)

3.2 Read Command Data

Send by main controlled board: START+READ+ACK+P1+ACK+P2+ACK+.....+P32+NACK+STOP

Data	Byte Content	Description					
Device	Sensor address and	This byte is 0x51 when read data					
address	read/write command						
P1	0x16	Frame header					
P2	Frame length	Number of byte, not including length of device address (from P1 to P32, 32 bytes in total)					
P3	Sensor status	Close: 1 Alarm: 7 Testing: 2 Data stable: 0x80 Other data is invalid.					
P4	Data 1, high byte						
P5	Data 1, low byte	Close laser diode: 7					
P6	Data 2, high byte	Calibration coefficient: (Range: 70~150, Corresponding: 0.7~1.5)					
P7	Data 2, low byte	Calibration Coemolent. (Manye. 70° 130, Corresponding. 0.7° 1.3)					
P8	Data 3, high byte	PM1.0 concentration unit ug/m ³ CPIMM					
P9	Data 3, low byte	PM1.0 concentration , unit: μg/m³, GRIMM					
P10	Data 4, high byte	PM2.5 concentration units ug/m ³ CPIMM					
P11	Data 4, low byte	PM2.5 concentration , unit: μg/m³, GRIMM					
P12	Data 5, high byte	DM10 concentration unit: ug/m ³ CPIMM					
P13	Data 5, low byte	PM10 concentration , unit: μg/m³, GRIMM					
P14	Data 6, high byte	PM1.0 concentration , unit: µg/m³, TSI					
P15	Data 6, low byte						
P16	Data 7, high byte	PM2.5 concentration , unit: µg/m³, TSI					
P17	Data 7, low byte						
P18	Data 8, high byte	PM10 concentration , unit: μg/m³ , TSI					
P19	Data 8, low byte						
P20	Data 9, high byte	Number of PM0.3, unit: pcs/0.1L					
P21	Data 9, low byte						
P22	Data 10, high byte	Number of PM0.5, unit: pcs/0.1L					
P23	Data 10, low byte						
P24	Data 11, high byte	Number of PM1.0, unit: pcs/0.1L					
P25	Data 11, low byte						
P26	Data 12, high byte	Number of PM2.5, unit: pcs/0.1L					
P27	Data 12, low byte	······································					
P28	Data 13, high byte	Number of PM5.0, unit: pcs/0.1L					
P29	Data 13, low byte						
P30	Data 14, high byte	Number of PM10, unit: pcs/0.1L					
P31	Data 14, low byte						
P32	Data check code	Check code = (P1^P2^^P31)					

Packing Information

Sensor per Tray	Tray Qty	Sensor per Carton	Carton Dimensions	Packing Material
30 pcs	13 layers	390 pcs	395*310*480 mm	Red pearl cotton (ESD)

After-Sales Services and Consultancy

Cubic Sensor and Instrument Co.,Ltd. Tel: +86 (0)27 81628827 Fax: +86 (0)27 87401159 Add: Fenghuang No.3 Road, Fenghuang Industrial Park, Eastlake Hi-tech Development Zone, Wuhan 430205, China E-mail: info@gassensor.com.cn