

SPECIFICATION

- Product: Particle Sensor Heater
- Model: PMHT01
- Version: V0.2
- Date: March 12th, 2021

Revision

No.	Version	Content	Date
1	V0.1	First version	2020.03.30
2	V0.2	Update protocol	2021.03.12

Particle Sensor Heater PMHT01

Description

Particle sensor heater is designed for outdoor particle sensor to effectively prevent the water mist impact in rainy and hot weather conditions, which helps particle sensors to have best performance in all outdoor conditions.

Principle

Through built-in sponge interlayer, the floating water drops generated from splashing rain can be effectively blocked, chemothermal heating pipe can heat and evaporate the water mist passed through sponge interlayer, to avoid the misidentification caused by water mist entering gas detection area. Combination of the two ways can effectively prevent the impact on sensor accuracy caused by weather and humidity conditions.

Features

- All-metal built, delicate shape
- Uniform heat conduction, anti-interference to ambient temperature
- Different heating temperature setting mode
- Precise monitoring data on tube temperature,

real-time temperature control

Simple structure, easy to install

Applications

- Monitoring and early warning system for atmospheric environment
- Outdoor air quality monitoring
- Road raised dust online monitoring

Specification

Particle Sensor Heater PMHT01 Specification			
Heating stabilization time	5min (default heating temperature 45 $^\circ\!{\mathbb C}$)		
Data refresh cycle	1s		
Working condition	-30~70℃, 5~95%RH		
Storage condition	-40~85℃,0~95%RH (non-condensing)		
Working voltage	DC 12V±0.5V		
Average working current	2.8A @12V DC		
Standby current	<25mA		
Communication	UART_TTL(3.3V)		
Dimension	W145*H35*D35 (mm)		
Lifetime	≥3 years		

Structure and PIN Definition

Connector Drawing

Pin Definition

No.	Pin	Description	
1	+12V	Power Input (+12V)	
2	GND	Power Ground (GND)	
3	CTRL	Suspended: normal working, Ground: cease heating	
4	NC	Suspended and not connected	
5	ТХ	Transmit Data TX (@3.3V)	
6	RX	Receive Data RX (@3.3V)	
7	GND	Power Ground (GND)	

Remark: can work by connecting only 1 and 2

Connector specification

Model	Pin Pitch
XH-3	2.5 mm pitch
A1251WR-S-4P	1.25mm pitch

Communication Protocol

UART protocol

1. Protocol Description

- 1) The data of this protocol are based on Hexadecimal, e.g. "46" is [70] in Hexadecimal;
- 2) [xx] is single-byte data (unsigned, 0-255); Double-byte data with high byte ahead, low byte behind;
- 3) Baud rate: 9600, DataBits: 8, StopBits: 1, Parity: No.
- 4) The setting mode is not conserved after power down. Power up default continuous mode.

2. Serial Communication Protocol Format

Sending format

Start Symbol	Length	Command	Data 1	Data n	Checksum
HEAD	LEN	CMD	DATA1	 DATAn	CS
11H	ХХН	ХХН	ХХН	 ХХН	ХХН

Detailed instruction of protocol format

Protocol Format	Detailed explanation	
Start symbol	Upper computer transmits fixed value[11H], module response fixed value [16H]	
Length	Frame byte length=data length+1(including CMD+DATA)	
Command number	Instruction number	
Data	Read data or write data, length variable	
Checksum Data cumulate sum = 256-(HEAD+LEN+CMD+DATA)		

3. Serial protocol command number table

No.	Function Name	Command number
1	Temperature setting	0x2A
2	Parameter reading	0x2B

Communication Protocol

4. Detailed descriptions of protocol 4.1 Heating temperature setting Send: 11 06 2A 09 DF1 DF2 DF3 DF4 [CS] Response: 16 02 2A 09 B5 Function: set heating temperature of heating tube **Explanation:** Set heating temperature of heating tube T = (DF3*256+DF4)/10. Note: Factory default heating temperature 45 °C, it's the optimum temperature we recommend after testing in our laboratory. 4.2 Parameter reading Send: 11 02 2B DF0 [CS] Response: 16 34 2A DF0 DF1... DF20... [CS] Function: read heating setting and current temperature **Explanation:** DF0 = 1, read current temperature of heating tube T = (DF7*256 + DF8)/10. DF0 = 3, setting temperature of heating tube T = (DF11*256 + DF12)/10.

Product Drawing

Product Code Description

After-Sales Services and Consultancy

Cubic Sensor and Instrument Co., Ltd

Add: Fenghuang No.3 Road, Fenghuang Industrial Park, Eastlake Hi-tech Development Zone, Wuhan 430205, China E-mail: info@gassensor.com.cn Tel: +86 (0)27 81628827 Fax: +86 (0)27 81628821 Website: <u>http://www.gassensor.com.cn</u>